The Synthesis of a New Dumbbell-shaped Compound of Bis-4, 4'-bipyridine Bridged by 2, 2'-Bipyridine

Xin Hua XU¹*, Rui Liang LU¹, Bing ZHOU¹, Jian Ping LI², Yin Quan DENG ²

¹College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 ²The First Affiliated Hospital,College of Medical Sciences,Zhejiang University, Hangzhou 310003

Abstract: The title compound **5** was synthesized in 45% yield by the reaction of compound **3** with α , α' -bis (bromomethyl)-2, 2'-bipyridine in CH₃CN at 70 for 24 h.

Keywords: Bipyridine, molecular shuttle, dumbbell-shaped compound.

Molecular machine is a new born research field¹⁻⁵, Stoddart and co-workers firstly reported a molecular shuttles in 1991⁶. In molecular machine a cyclic (bead) moves back and forth like a shuttles between two or more groups (station) having noncovalent interaction with a bead. Dumbbell-shaped component is the key intermediate for the synthesis of molecular machines⁷. One of the approaches for control movement of the bead is based on coordination reaction intrigue. In our protocol, a ligand, which is able to bind metal ion, is incorporating into dumbbell-shapped component. The ligand can coordinate to metal ion under some circumstance and decomplexe under other condition. Thus the control movement on bead can be carried out. 2, 2'-Bipyridine contains two nitrogen atoms with a pair of lone electron. We designed a dumbbell shaped compound of bis-4, 4'-bipyridine bridged by 2, 2'-bipyridine.

The reaction of compound **1** with 4, 4'-bipyridine (10.0 eq.) was finished in 36 h at 70°C to give bipyridinum salt **2** in very high yields. Compound **3** has better solubility in organic solvent, compound **2** was converted into compound **3** by anion exchange, and reacted with α , α' -bis(bromomethyl)-2, 2'-bipyridine in CH₃CN at 70°C for 24 h to give the dumbbell-shaped compound of bis-4, 4'-bipyridine bridged by 2, 2'-bipyridine **5** in 45% yield.

Experimental

The synthesis of compound 3: 4, 4'-Bipyridine 312 mg (20 mmol) was dissolved in dry CH₃CN (5 mL) and heated to reflex under nitrogen, the compound $\mathbf{1}^3$ 140 mg (0.2 mmol) in dry CH₃CN (5 mL) was added dropwise to this solution during 1h. The reaction mixture was stirred for 36 hs at 70°C, thus the solvent was removed in vacumn. The re-

^{*} E-mail: xhx1581@21cn.com

sidue was subjected to column chromatography, using MeOH/acetate(1:4) as eluent to recover the 4, 4'-bipyridine, then eluted with MeOH/CH₃CN/H₂O(7:3:1) and MeOH/CH₃CN/NH₄Cl(7:3:0.4) as eluent to wash out compound **2**. m.p.120-122°C, ¹H NMR (CD₃COCD₃, 500 MHz, δppm), 1.29(s, 18H, 2Bu^t), 2.27(s, 3H, CH₃), 3.87(t, 2H, J=5.0Hz, H-k), 4.06(t, 2H, J=5.0Hz, H-l), 4.19(t, 2H, J=5.0Hz, H-j), 5.12(t, 2H, J=5.0Hz, H-m), 6.76(d, 2H, J=9.15Hz, H-n), 7.03~7.33 (m, 17H, H-Ar), 7.68(d, 2H, J=7.95Hz, H-q), 7.94(d, 2H, J=6.1Hz, H-d), 8.56(d, 2H, J=7.0Hz, H-b), 8.80(d, 2H, J=6.1Hz, H-e), 9.37(d, 2H, J=7.0Hz, H-a). MS. m/z 675.4(M-TsO⁻). The compound **2** was dissolved in H_2O-Me_2CO mixture, saturated aquous NH_4PF_6 (2.0 mL) was added, the Me_2CO was evaporated off and the resulting yellowish solid was washed with H2O, MeOH subsequently, dried under vacuum, to give the compound **3**, m.p.132-134°C, yield 95%. ¹H NMR (CD₃COCD₃, 500MHz, δppm), 1.30(s, 18H, 2Bu^t), 3.89(t, 2H, J= 4.6Hz, H-k), 4.10(t, 2H, J=4.6Hz, H-l), 4.25(t, 2H, J=4.6Hz, H-j), 5.11(t, 2H, J=4.6Hz, H-m), 6.79 (d, 2H, J=8.85Hz, H-n), 7.05~7.32(m,15H, H-Ar), 7.95(d, 2H, J=5.8Hz, H-b), 8.60(d, 2H, J=6.4Hz, H-d), 8.83(s, 2H, H-e), 9.25(d, 2H, J=6.1Hz, H-a). ¹³C NMR (CD₃COCD₃, 500MHz, δppm), 157.568(C-a), 151.921(C-d), 149.347(C-e), 148.269(C-b), 147.105, 144.975, 132.797, 131.637, 131.349, 128.228, 126.932, 126.319, 125.098, 114.030, 70.319, 69.682, 67.885, 62.011, 34.814, 31.577, 30.265. MS. m/z 675.3(M-PF₆), 355.2(4),205(2). Cacld. C, 68.8; H, 6.22; N, 3.41. Found C, 69.2; H, 6.23; N, 3.42.

Synthesis of compound 5: Compound 3 81 mg (0.1 mmol) was dissolved in dry CH₃CN (8 mL), 2, 2'-bis(bromomethyl)-2, 2'-bipyridine 4^5 11.4 mg (0.3 mmol) was added to the solution, the reaction mixture was stirred and heated at 70°C under nitrogen for 2 days. After cooling to room temperature, the yellowish solid was filtered off and washed with the small amounts of MeCN. The residue was then dissolved in aqueous acetone and the saturated aquous NH₄PF₆ solution (5 mL) was added. Me₂CO was evaporated off under reduced pressure and the yellowish solid was filted off and washed with H₂O, dried to give compound 5, m.p. 270-275°C (dec), yield 45.0%. ¹H NMR(DMSO, 500MHz, δppm), 1.25(s, 18H, 2Bu^t), 3.80 (t, 2H, J=4.6Hz, H-k), 4.05(m, 4H, H-1,j), 4.95(t, 2H, J=4.6Hz, H-m), 6.22(s, 2H, H-i), 6.86(d, 2H, J=8.85Hz, H-n),

7.03~7.30(m, 15H, H-Ar), 7.76(d, 1H, J=7.3Hz, H-f), 8.04(m, 2H, H-g,h), 8.85(d, 2H, J=6.8Hz, H-d), 8.90(d, 2H, J=6.2Hz, H-b), 9.34 (d, 2H, J=6.2Hz, H-e), 9.60(d, 2H, J=6.7Hz, H-a). ¹³C NMR (CD₃COCD₃, 500MHz, δppm), 161.270(C-a), 158.889(C-e), 154.406(C-d), 153.168(C-b), 152.025, 147.447, 146.592, 145.827, 143.540, 139.440, 138.774, 138.296, 131.054, 130.100, 129.717, 129.586, 127.430, 126.192, 124.000, 120.089, 112.941, 69.810, 68.198, 68.010, 66.187, 62.559, 60.789, 33.651, 30.706, 23.046. MS. *m*/z 1532.8(M-4PF₆), Calcd. C, 60.3; H, 5.30; N, 3.98. Found C, 59.9; H, 5.31; N, 3.97.

References

- 1. J. P. Sauvage, Science 2001, 291,2105.
- 2. A. M. Brouwer, C. Frochot, F. G. Gatti, et al., Science, 2001, 291, 2106.
- 3 . C. P. Collier, G. Mattersteig, E. W. Wong, et al., Science, 2000, 289, 1172.
- 4. V. Bermudez, N. Capron, T. Gase, F. et al., Nature, 2000, 406, 608.
- 5. C.P. Collier, E. W. Wong, M. Belohradsky, et al., Science, 1999, 285, 391.
- P. R.Ashton, P. R.Anelli, J. F. Stoddart, et al., J. Am. Chem. Soc., 1991,113, 5131; ibid, 1992, 114, 193; Ibid, 1995, 117, 1271; Ibid, 1996,118, 4931; ibid, 1998, 120,11932.
- 7. S. L.Alexanader, A. L. David, A.Murphy, J. Am. Chem. Soc., 1997, 119, 11092.
- 8. L. F.Cassandra, R. A.Natia, J. S.Jaydep, J. Org. Chem., 1997, 62, 9314.

Received 30 December, 2002