The Synthesis of a New Dumbbell-shaped Compound of Bis-4, 4'-bipyridine Bridged by 2, 2'-Bipyridine

Xin Hua XU^{1}, Rui Liang LU^{1}, Bing ZHOU^{1}, Jian Ping LI^{2}, Yin Quan DENG ${ }^{2}$
${ }^{1}$ College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082
${ }^{2}$ The First Affiliated Hospital,College of Medical Sciences,Zhejiang University, Hangzhou 310003

Abstract

The title compound $\mathbf{5}$ was synthesized in 45% yield by the reaction of compound $\mathbf{3}$ with α, α^{\prime}-bis (bromomethyl)-2, 2^{\prime}-bipyridine in $\mathrm{CH}_{3} \mathrm{CN}$ at $70^{\circ} \mathrm{C}$ for 24 h .

Keywords: Bipyridine, molecular shuttle, dumbbell-shaped compound.

Molecular machine is a new born research field ${ }^{1-5}$, Stoddart and co-workers firstly reported a molecular shuttles in 1991^{6}. In molecular machine a cyclic (bead) moves back and forth like a shuttles between two or more groups (station) having noncovalent interaction with a bead. Dumbbell-shaped component is the key intermediate for the synthesis of molecular machines ${ }^{7}$. One of the approaches for control movement of the bead is based on coordination reaction intrigue. In our protocol, a ligand, which is able to bind metal ion, is incorporating into dumbbell-shapped component. The ligand can coordinate to metal ion under some circumstance and decomplexe under other condition. Thus the control movement on bead can be carried out. 2, 2'-Bipyridine contains two nitrogen atoms with a pair of lone electron. We designed a dumbbell shaped compound of bis- $4,4^{\prime}$-bipyridine bridged by $2,2^{\prime}$-bipyridine.

The reaction of compound $\mathbf{1}$ with 4 , 4^{\prime}-bipyridine (10.0 eq.) was finished in 36 h at $70^{\circ} \mathrm{C}$ to give bipyridinum salt $\mathbf{2}$ in very high yields. Compound $\mathbf{3}$ has better solubility in organic solvent, compound $\mathbf{2}$ was converted into compound $\mathbf{3}$ by anion exchange, and reacted with α, α^{\prime}-bis(bromomethyl)-2, 2^{\prime}-bipyridine in $\mathrm{CH}_{3} \mathrm{CN}$ at $70^{\circ} \mathrm{C}$ for 24 h to give the dumbbell-shaped compound of bis-4, 4^{\prime}-bipyridine bridged by $2,2^{\prime}$-bipyridine $\mathbf{5}$ in 45\% yield.

Experimental

The synthesis of compound 3: 4, 4'-Bipyridine $312 \mathrm{mg}(20 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and heated to reflex under nitrogen, the compound $\mathbf{1}^{3} 140 \mathrm{mg}(0.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added dropwise to this solution during 1 h . The reaction mixture was stirred for 36 hs at $70^{\circ} \mathrm{C}$, thus the solvent was removed in vacumn. The re-

[^0]
sidue was subjected to column chromatography, using $\mathrm{MeOH} /$ acetate (1:4) as eluent to recover the 4, 4'-bipyridine, then eluted with $\mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(7: 3: 1)$ and $\mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{NH}_{4} \mathrm{Cl}(7: 3: 0.4)$ as eluent to wash out compound 2. m.p.120-122 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 500 \mathrm{MHz}, \delta \mathrm{ppm}\right), 1.29\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{Bu}^{\mathrm{t}}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{k}), 4.06(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}), 4.19(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{j}), 5.12(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}$, $\mathrm{H}-\mathrm{m}), 6.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.15 \mathrm{~Hz}, \mathrm{H}-\mathrm{n}), 7.03 \sim 7.33(\mathrm{~m}, 17 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.95 \mathrm{~Hz}$, $\mathrm{H}-\mathrm{q}), 7.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 8.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 8.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{e})$, $\left.9.37(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}) . \mathrm{MS} . \mathrm{m} / \mathrm{z} 675.4(\mathrm{M}-\mathrm{TsO})^{-}\right)$. The compound 2 was dissolved in $\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}_{2} \mathrm{CO}$ mixture, saturated aquous $\mathrm{NH}_{4} \mathrm{PF}_{6}(2.0 \mathrm{~mL})$ was added, the $\mathrm{Me}_{2} \mathrm{CO}$ was evaporated off and the resulting yellowish solid was washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ subsequently, dried under vacuum, to give the compound 3, m.p.132-134 ${ }^{\circ} \mathrm{C}$, yield 95%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 500 \mathrm{MHz}, \delta \mathrm{ppm}\right), 1.30\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{Bu}^{\mathrm{t}}\right), 3.89(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{k})$, $4.10(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}), 4.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{j}), 5.11$ (t, $2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{m}$), 6.79 (d, $2 \mathrm{H}, \mathrm{J}=8.85 \mathrm{~Hz}, \mathrm{H}-\mathrm{n}), 7.05 \sim 7.32(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 8.60(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 8.83(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{e}), 9.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$, $500 \mathrm{MHz}, \delta p p m), 157.568(\mathrm{C}-\mathrm{a}), 151.921(\mathrm{C}-\mathrm{d}), 149.347(\mathrm{C}-\mathrm{e}), 148.269(\mathrm{C}-\mathrm{b}), 147.105$, 144.975, 132.797, 131.637, 131.349, 128.228, 126.932, 126.319, 125.098, 114.030, $70.319,69.682,67.885,62.011,34.814,31.577,30.265$. MS. m / z 675.3($\mathrm{M}_{-} \mathrm{PF}_{6}$), 355.2(4),205(2). Cacld. C, 68.8; H, 6.22; N, 3.41. Found C, 69.2; H, 6.23; N, 3.42.

Synthesis of compound 5: Compound 381 mg (0.1 mmol) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL}), 2,2^{\prime}$-bis(bromomethyl)-2, 2'-bipyridine $4^{5} 11.4 \mathrm{mg}(0.3 \mathrm{mmol})$ was added to the solution, the reaction mixture was stirred and heated at $70^{\circ} \mathrm{C}$ under nitrogen for 2 days. After cooling to room temperature, the yellowish solid was filtered off and washed with the small amounts of MeCN . The residue was then dissolved in aqueous acetone and the saturated aquous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ solution (5 mL) was added. $\mathrm{Me}_{2} \mathrm{CO}$ was evaporated off under reduced pressure and the yellowish solid was filted off and washed with $\mathrm{H}_{2} \mathrm{O}$, dried to give compound 5, m.p. $270-275^{\circ} \mathrm{C}$ (dec), yield $45.0 \% .{ }^{1} \mathrm{H}$ NMR(DMSO, $500 \mathrm{MHz}, \delta p p m), 1.25\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{Bu}^{\mathrm{t}}\right), 3.80(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{k}), 4.05(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{j}), 4.95(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{m}), 6.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{i}), 6.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.85 \mathrm{~Hz}, \mathrm{H}-\mathrm{n})$,
$7.03 \sim 7.30(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{f}), 8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{g}, \mathrm{h}), 8.85(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 8.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 9.34(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{e}), 9.60(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 500 \mathrm{MHz}, \delta p p m\right), 161.270(\mathrm{C}-\mathrm{a}), 158.889(\mathrm{C}-\mathrm{e})$, 154.406(C-d), 153.168(C-b), 152.025, 147.447, 146.592, 145.827, 143.540, 139.440, 138.774, 138.296, 131.054, 130.100, 129.717, 129.586, 127.430, 126.192, 124.000, 120.089 , 112.941, 69.810, 68.198, 68.010, 66.187, 62.559, 60.789, 33.651, 30.706, 23.046. MS. m / z 1532.8(M-4PF ${ }^{-}$), Calcd. C, 60.3 ; H, 5.30 ; N, 3.98. Found C, 59.9; H, 5.31; N, 3.97.

References

J. P. Sauvage, Science 2001, 291,2105.
2. A. M. Brouwer, C. Frochot, F. G. Gatti, et al., Science, 2001, 291, 2106.

3 . C. P. Collier, G. Mattersteig, E. W. Wong, et al., Science, 2000, 289, 1172.
4. V. Bermudez, N. Capron, T. Gase, F. et al., Nature, 2000, 406, 608.
5. C.P. Collier, E. W. Wong, M. Belohradsky, et al., Science, 1999, 285, 391.
6. P. R.Ashton, P. R.Anelli, J. F. Stoddart, et al., J. Am. Chem. Soc., 1991,113, 5131; ibid, 1992, 114, 193; Ibid, 1995, 117, 1271; Ibid, 1996,118, 4931; ibid, 1998, 120,11932.
7. S. L.Alexanader, A. L. David, A.Murphy, J. Am. Chem. Soc., 1997, 119, 11092.
8. L. F.Cassandra, R. A.Natia, J. S.Jaydep, J. Org. Chem., 1997, 62, 9314.

Received 30 December, 2002

[^0]: * E-mail: xhx1581@21cn.com

